
XPages: Social Tools v1.01

Created by Dan O’Connor, Niklas Heidloff, Phil Riand and David Leedy

www.xpagescheatsheet.com Updated as of Jan 26 2012

The XPages Social Enabler

The XPages Extension Library now contains functionality which allow users to connect to social networks, and REST services. In order to
build “social capabilities” into your application there are new controls, data sources and other artifacts such as sample custom controls
available through the Extension Library.
These capabilities are collectively referred to as the “XPages Social Enabler”. The XPages Social Enabler consists of three parts:
➔ The XPages Social Enabler plug-in
➔ Token store application (WebSecurityStore.nsf)
➔ XPages Social Enabler sample application (XPagesSBT.nsf)

The XPages Social Enabler is freely available as a part of the XPages Extension Library. It can be downloaded from http://XPag.es/?
XLibDownload (or by going to the Downloads section of http://extlib.openntf.org). Once downloaded please follow the setup instructions to
install the XPages Extension Library on the Domino server, Notes and Domino Designer clients. The XPagesSBT.nsf application will need to
be signed by the same ID as the ID used when creating Application OAuth Token documents within the WebSecurityStore.nsf application.
Anonymous must not have access to WebSecurityStore.nsf. All users who are to use the XPages Social Enabler functionality need to have
author access to the WebSecurityStore application, this is so that their user keys can be stored in the database. It is worth noting that the
process of signing the database is not always immediate.

XPages.Info

What are the Steps Required to Register an OAuth Application?

There are a number of common steps required when registering any OAuth application within the XPages Social Enabler:
• The system administrator must obtain OAuth credential from the online service provider. The credentials
must include:

OAuth Consumer Key • OAuth Consumer Secret • OAuth Request URL • OAuth Authorization URL • OAuth Token URL
• The OAuth credentials must be entered in the WebSecurityStore application by the user who signed the application consuming this
information (for instance XPagesSBT.nsf).
• Navigate to http://myserver.myco.com/WebSecurityStore.nsf
• In the Application Keys section click the Add Token button.
• The user must enter appropriate information in all of the fields in the Application Token dialog

• In the case of the XPages Social Enabler sample application the Application Id is XPagesSBT across all services. The Application Id field
within the Application Token definition must correspond exactly to the appId property which is defined within the Endpoint definition (in faces-
config.xml) for the service being registered.
The Service Name field must correspond to the serviceName property defined within the Endpoint definition (in faces-config.xml) for the
service being registered.
• The Consumer key and Consumer secret are OAuth credentials which are given to the user when registering an Application within an OAuth
provider (online service).
• The online API documentation for an online service should provide the remaining information that is required to register an Application Token
within WebSecurityStore.nsf.

What is a Client Service?

An integral part of the XPages Social Enabler architecture is the ability to execute
requests against a REST service and process the responses to those requests
easily.
A ClientService is an object that has the ability to perform HTTP requests based
on a URL, a set of parameters and options. For the most part each service
supported by the XPage Social Enabler has a corresponding dedicated
ClientService implementation:
ClientService
• ActivityStreamsService
• AuthenticationService
• ConnectionsService
• DropboxService
• GenericService
• LotusLiveService
• TwitterService
These classes can be called from within Server Side JavaScript. This model has
far reaching implications, as it is possible to call services from these providers
even if support for the service is not already built into the XPages Social Enabler
application.

Getting a User's Profile Image URL from IBM Connections

public String getPeopleImageUrl(String unid) {
 String url = null;
 Endpoint endpoint = (Endpoint) JSFUtil.getVariable("connections");
 GenericService svc = new GenericService(endpoint, "/profiles/atom/profile.do");
 HashMap<String, String> parameters = new HashMap<String, String>();
 parameters.put("userid", unid);
 try {
 Object feed = svc.get(parameters, "xml");
 XmlNavigator navigator = new XmlNavigator((Document) feed);
 DataNavigator entry = navigator.get("feed").get("entry");
 DataNavigator links = entry.get("link");
 url = links.selectEq("@type", "image").stringValue("@href");
 }
 catch (ClientServicesException e) {
 e.printStackTrace();
 }
 return url;
 }
Note: This example is being used to show the coding principle. A better approach
for this particular case would be to use the userBean to get the photo.

Getting User Information from LotusLive

if(!
@Endpoint('lotuslive').getOAuthProvider().acquireTok
en()) {
 viewScope.text = "Please login in order to use this
service"
 return;
 }
var svc = new
sbt.LotusLiveService(@Endpoint('lotuslive'),"manage/
oauth/getUserIdentity")
var msg = svc.get(null,"text");
viewScope.text = msg

Sample Usage of Files Data Source with LotusLive Files

<xp:this.data>
 <xe:fileServiceData var="fileServiceData1">
 <xe:this.serviceType>
 <xe:lotusLiveFileData></xe:lotusLiveFileData>
 </xe:this.serviceType>
 <xe:this.urlParameters>
 <xe:urlParameter name="subscriberId">
 <xe:this.value>
 <![CDATA[${javascript:return userBean.lotusLiveSubscriberId;}]]>
 </xe:this.value>
 </xe:urlParameter>
 </xe:this.urlParameters>
 </xe:fileServiceData>
</xp:this.data>
Note: If using this data source in your application be sure to enable the LotusLive
People Data Provider in xsp.properties of the application:
extlib.people.provider=lotuslive

How does the Web Security Store Work?

The WebSecurityStore is a Domino Application (nsf)
that is used by the XPages Social Enabler to store
OAuth authentication information, and also user
tokens. The WebSecurityStore is configured such that
only the document author may read the user tokens,
and only the application developer (signer of the
design elements) may read the OAuth credential
information. It is important to note that the same user
ID should be used to sign the Design of the XPages
Social Enabler sample application, and to enter the
OAuth Application token credentials. During a typical
request to a REST service, from the XPages Social
Enabler application, the WebSecurityStore.nsf is
queried for a user token for the logged in user. If one is
not found the user credentials are requested and
processed (through one of the supported
authentication mechanisms such as OAuth), during
this time the user logs into the REST service and a
token is granted to the user which is stored in the
WebSecurityStore.nsf and supplied for future requests.

What is an Endpoint?

The XPages Social Enabler encapsulates each service
into what is referred to as an Endpoint. The type of
Endpoint used determines which form of
authentication is to be used to authenticate with the
service. The Endpoints are defined as managed
beans, configured through faces-config.xml within the
XPages Social Enabler application. The Endpoint
architecture is sufficiently flexible that the Endpoint
definitions can be externalized to an Endpoint store
application.
Each service requires a limited number of steps to
configure. All of the services support one form of
authentication or another. There are two primary forms
of authentication currently supported, Basic
authentication and OAuth 1.0 authentication.

http://XPag.es/?XLibDownload
http://XPag.es/?XLibDownload
http://XPag.es/?XLibDownload
http://XPag.es/?XLibDownload
http://extlib.openntf.org
http://extlib.openntf.org
http://myserver.myco.com/WebSecurityStore.nsf
http://myserver.myco.com/WebSecurityStore.nsf

IBM Connections and IBM Sametime

IBM Connections and Sametime are unique amongst the services configured in this document in that it is likely that they are the only services that reside within your firewall. IBM Connections and Sametime generally use
Basic authentication so the setup is slightly different to the other (OAuth) services. IBM Connections and Sametime are configured through the Endpoint definition in faces-config.xml. They are configured by default to work
with the IBM Connections server hosted on Lotus Greenhouse. In order to register with Lotus Greenhouse go to https://greenhouse.lotus.com/gh_next/lotusgreenhouserequests.nsf/MainDocumentSelf?openForm Once
registered with Lotus Greenhouse and IBM Sametime servers you are free to use the IBM Connections and Sametime integration in the XPages Social Enabler sample application.
If you would like to use this functionality with your internal IBM Connections or Sametime server you will need to make a copy the IBM Connections Endpoint and/or the Sametime Endpoint in the faces-config.xml of the
XPages Social Enabler sample application. To modify faces.config.xml perform the following steps:
1. Search for greenhouseBasic for IBM Connections and greenhouseSametime for IBM Sametime. 2. Copy/paste the whole endpoint definition element. 3. Change the value of managed-bean-name property to a value
such that the endpoint will have a unique name (such as “myconnections” or "mysametime"). 4. Replace the value of the url managed property with the URL location of your IBM Connections server or IBM Sametime
server. 5. Save and close faces-config.xml. 6. Using the Resources Navigator view in Domino Designer open xsp.properties (located in the WebConent/WEB-INF folder within the application [XPagesSBT.nsf]). Modify
xsp.properties to define which Connections Endpoint bean to use; e.g.: extlib.endpoint.connections=myconnections and also which Sametime Endpoint to use; e.g: extlib.endpoint.sametime=mysametime
7. Save and close xsp.properties. 8. On future attempts to access IBM Connections data or IBM Sametime it will be your company's IBM Connections and/or IBM Sametime server that will be accessed.

DropboxDropbox

URL
Application ID
Service Name

Consumer Key
Key Type

Cons. Secret
Request Token

Auth. URL
Access Token

https://dropbox.com/developers/apps
XPagesSBT
Dropbox
<Unique to you>
HMAC-SHA1
<Unique to you>
https://api.dropbox.com/1/oauth/request_token
https://api.dropbox.com/1/oauth/authorize
https://api.dropbox.com/1/oauth/access_token

IBM Social Business ToolkitIBM Social Business Toolkit

URL
Application ID
Service Name

Consumer Key
Key Type

Cons. Secret
Request Token

Auth. URL
Access Token

https://greenhouse.lotus.com/vulcan/security/provider/register.jsp?serviceProvider=vulcanToolkit
XPagesSBT
Greenhouse
<Unique to you>
HMAC-SHA1
<Unique to you>
https://greenhouse.lotus.com:443/vulcan/security/provider/requestToken
https://greenhouse.lotus.com:443/vulcan/security/provider/authorize
https://greenhouse.lotus.com:443/vulcan/security/provider/accessToken

FacebookFacebook

URL
Application ID
Service Name

Consumer Key
Key Type

Cons. Secret
Request Token

Auth. URL
Access Token

https://developers.facebook.com/apps
XPagesSBT
Facebook
<Unique to you>
HMAC-SHA1
<Unique to you>
https://graph.facebook.com/oauth/request_token
https://graph.facebook.com/oauth/authorize
https://graph.facebook.com/oauth/access_token

LotusLiveLotusLive

URL
Application ID

Service Name:
Consumer Key

Key Type
Cons. Secret

Request Token
Auth. URL

Access Token

https://apps.lotuslive.com/manage/account/isv
XPagesSBT
LotusLive
<Unique to you>
PLAINTEXT
<Unique to you>
https://apps.lotuslive.com/manage/oauth/getRequestToken
https://apps.lotuslive.com/manage/oauth/authorizeToken
https://apps.lotuslive.com/manage/oauth/getAccessToken

TwitterTwitter

URL
Application ID
Service Name

Consumer Key
Key Type

Cons. Secret
Request Token

Auth. URL
Access Token

https://dev.twitter.com/apps/new
XPagesSBT
Twitter
<Unique to you>
HMAC-SHA1
<Unique to you>
https://api.twitter.com/oauth/request_token
https://api.twitter.com/oauth/authorize
https://api.twitter.com/oauth/access_token

Connecting to External Services

Utilities

The XPages Social Enabler provides a number of XPages artifacts (such as
data sources), utilities and new @Functions to the XPages Developer.
Example driven unit tests of these utilities and @Functions are provided in the
Utilities tab of the XPages Social Enabler sample application. Examples of
how to use some of these utilities and @Functions are given on the final page
of this document. The Utilities tab also provides a dump of the information
stored in the userBean managed bean. For the adventurous, exploration of
the userBean's functionality is a must, it provides a huge amount of flexibility
to the XPages developer (and has many performance benefits also). The
userBean is defined as a managed bean within the 'core' extension library,
some interesting examples of its usage can be found be searching for
"userBean" within the XPages Social Enabler sample application.

https://greenhouse.lotus.com/gh_next/lotusgreenhouserequests.nsf/MainDocumentSelf?openForm
https://greenhouse.lotus.com/gh_next/lotusgreenhouserequests.nsf/MainDocumentSelf?openForm

